Ознакомьтесь с нашей политикой обработки персональных данных

EDUCATION EXPANDS KNOWLEDGE

МЫ НЕ РЕШАЕМ ЗА ВАС - МЫ ПОМОГАЕМ РЕШАТЬ!


| ЦЕЛИ СООБЩЕСТВА | АДМИНИСТРАЦИЯ СООБЩЕСТВА | МОДЕРАТОРЫ СООБЩЕСТВА |
Основала сообщество и бессменно руководила им с 2006 по 2012 г. рано ушедшая из жизни Robot, вложившая в него свои силы, знания, опыт, доброту и стремление к бескорыстной помощи.
ПРАВИЛА СООБЩЕСТВА
|НЕКОТОРЫЕ СОВЕТЫ ПО ОФОРМЛЕНИЮ|КАК ПРАВИЛЬНО ЗАПОЛНИТЬ @ТЕМУ|


Если вы хотите научиться плавать, то смело входите в воду,
а если хотите научиться решать задачи — решайте их (Д. Пойа).

Научился сам - не мешай научиться другому.
URL
  • ↓
  • ↑
  • ⇑
 
22:36 

Целочисленные тройки

wpoms.
Step by step ...


Найдите все целочисленные тройки `(a,b,c)` такие, что `a > 0 > b > c` и их сумма равна 0 при условии, что
`N=2017-a^3b-b^3c-c^3a`

является квадратом целого числа.



@темы: Теория чисел

11:03 

Аксиоматическая теория множеств Цермело-Френкеля

Доброго времени суток!

Я пытаюсь изучать аксиоматическую теорию множеств. Решил начать с ZF как наиболее популярной. Вопросов значительно больше, чем ответов. Да и вопросы сформулировать, увы, здесь не всегда просто. Просто сплошная непонятность! Попытаюсь наиболее ясно сформулировать непонятные мне моменты.

I) В любой аксиоматической теории вводятся неопределяемые объекты и отношения между ними. Например, в евклидовой геометрии такими неопределяемыми объектами являются "точка", "прямая", "плоскость", "движение", а неопределяемыми отношениями - бинарное отношение "инцидентность" и тернарное отношение "лежит между" (согласно немного видоизмененной аксиоматике Гильберта, приведенной в книге Костина "Основания геометрии" () . В теории Пеано натуральных чисел неопределяемым объектом является "натуральное число", а неопределяемым отношением - бинарное отношение "следовать за". В связи с этим возникает вопрос. Какие неопределяемые понятия и отношения используются в аксиоматике ZF? С моей точки зрения, неопределяемыми понятиями должны быть "множества", "элементы", неопределяемыми отношениями - бинарное отношение "принадлежит" (∈ (), "равно" (=). Но если я прав (хотя, не похоже), почему тогда во всех аксиомах ZF используются только малые латинские буквы? Иначе говоря, почему на уровне букв не делается различия между "множествами" и "элементами"? В книге Н. И. Казимирова "Введение в аксиоматическую теорию множеств" на стр. 4 в первом абзаце утверждается: " В теории множеств (как в наивной, так и в формальной) мы любой объект считаем множеством, т. к., во-первых, это ничуть не мешает нам моделировать при помощи теории множеств реальные объекты, а во-вторых, это упрощает построение самой теории". Т. е. нет понятия "элемент" в аксиоматике ZF? Выходит, что элементами любого множества в ZF являются элементы, сами являющиеся множествами. Но тогда получается, например, следующее. Возьмем, к примеру, множество A, состоящее из числа 1: A={1}. Верным будет утверждение 1 ∈ A. Но 1 - само множество! Что ему тогда принадлежит? 1? Т. е. 1 ∈ 1? Так что ли поступают в аксиоматической теории множеств? (Напомню, что во многих учебниках по наивной теории множеств запись 1 ∈ 1 признается не имеющей смысла; верно лишь, что 1 {1}). Я заранее прошу прощения за большую выдержку из упомянутой книги Казимирова, но вот что он сам пишет по поводу такого странного положения дел:

"С самого начала мы предположили, что все множества, какие мы рассматриваем в наивной (канторовской) теории множеств представляют из себя произвольные наборы множеств, никаких других ограничений на понятие множества мы не накладывали. Покажем, что такое достаточно произвольное определение множества не может быть корректным с точки зрения логики, ибо приводит к противоречию. Следующий парадокс, который мы получим здесь, называется парадоксом Расселла.
Поскольку атомарная формула х у, выражающая принадлежность множества х к множеству у, имеет смысл для любых множеств х и у, ничто не мешает нам рассмотреть такой ее вид: х х. С точки зрения здравого смысла формула х х должна быть ложной для любого множества х, ибо мы считаем, что часть некоего объекта (в данном случае множества) не может совпадать с самим этим объектом. Поэтому мы вводим следующее определение: множество х такое, что х x, называется регулярным, а множество х, для которого хх, назовем сингулярным.
Снова нам ничто не мешает собрать все регулярные множества в одно множество R, точнее, R={x|x x}. Попытаемся теперь ответить на следующий вопрос: регулярно или сингулярно множество R?
Предположим, что множество R регулярно, т.е. R R. Но тогда R удовлетворяет тому свойству, которым оно само определено, значит, R R. Противоречие. Предположим тогда, что R сингулярно, т. е. R R. Но тогда R не удовлетворяет тому свойству, которым определены его элементы, следовательно, R R. Противоречие.
Итак, множество R не регулярно и не сингулярно, чего быть не может, если мы принимаем закон исключенного третьего (либо А, либо не А). Так может быть, R — не множество?
Полученный парадокс, как может показаться, доказывает несостоятельность самой идеи множества, как высшей точки абстракции в математических науках. На самом же деле весь тот путь, который мы прошли при построении множеств и при рассмотрении парадокса Расселла, уже дает предпосылки к решению этого парадокса. Мы с самого начала считали, что множество есть произвольная совокупность (множеств), что привело к построению парадоксального множества R. Насколько велико это множество, мы также не знаем, ибо мы предположили существование сингулярных множеств. С другой стороны, если предположить, что все множества регулярны, то R будет просто множеством всех множеств. Конечно, это не избавляет нас от противоречия, но зато дает повод попытаться исключить из рассмотрения сингулярные множества, а также «слишком
большие» совокупности множеств путем навязывания множествам некоторых условий или, как принято говорить, аксиом".

Но в нашем случае речь идет не о "больших множествах", а всего лишь о множестве, состоящем из одного элемента. И, по определению Казимирова, оно сингулярно! Итак, есть ли в теории ZF различие между "множествами" и "элементами"? Что-то уже много написал... Если кто-то поможет ответить, буду искренне признателен. Остальные вопросы в ходе дискуссии. Спасибо!




@темы: Математическая логика

12:01 

Много треугольников

wpoms.
Step by step ...


Через точку `A` на плоскости проходят 3 прямые, которые разбивают плоскость на 6 областей.
Внутри каждой области выбраны 5 точек. Известно, что никакие три из выбранных 30 точек не лежат на одной прямой. Докажите, что существует не менее 1000 треугольников с вершинами в выбранных точках таких, что точка `A` находится внутри или на границе треугольников.



@темы: Планиметрия

20:18 

Пятизначные числа

Уважаемое сообщество , не могу найти решение задачи - доказательство:
Существует ли такое пятизначное число, которое при возведении в произвольную натуральную степень будет оканчиваться на те же пять цифр, что и исходное число, притом в том же порядке?
Ответы нашел - например 90625, 890625. Но не могу этого доказать

@темы: Головоломки и занимательные задачи

09:43 

Переходим к старшим

wpoms.
Step by step ...


Остроугольный треугольник `ABC` с `AB < AC < BC` вписан в окружность `c(O,R)`. Окружность `c_1(A,AC)` пересекает окружность `c` в точке `D` и пересекает продолжение стороны `CB` в `E`. Прямая `AE` пересекает `c` в `F` и точка `G` симметрична `E` относительно точки `B`. Докажите, что около четырёхугольника `FEDG` можно описать окружность.



@темы: Планиметрия

20:58 

Игра по правилам

wpoms.
Step by step ...


Компания из `n` игроков играет в настольную игру по следующим правилам.
а) В каждом раунде играют ровно `3` игрока
б) Игра заканчивается через `n` раундов
в) Каждая пара игроков играет вместе по крайней мере в одном раунде.
Найдите наибольшее возможное значение `n`.



@темы: Комбинаторика

21:58 

Что-то гармоническое

wpoms.
Step by step ...


Найдите все такие положительные целые числа`a`, `b` и простые числа `p` такие, что
`\frac{1}{p} = \frac{1}{a^2} + \frac{1}{b^2}`.



@темы: Теория чисел

20:10 

Боремся с системой

wpoms.
Step by step ...


Решите систему в положительных действительных числах:
`{(x*(6 - y) = 9), ( y*(6 - z) = 9), (z*(6 - x) = 9):}`.



@темы: Системы НЕлинейных уравнений

14:09 

Пишет Гость:
Добрый день!

Не могу вспомнить название и автора книги, которую читал в детстве. В ней было изложение теории вероятностей для школьников. Мне запомнилась одна задачка о ките и китобое: известно место последнего всплытия кита, но направление его движения неизвестно, через некоторое время кит всплывет снова за воздухом; китобойное судно имеет большую скорость, но не знает в каком направлении искать кита; как должно двигать судно?
Помню картину с уплывающим китом и спиральной траектории корабля...

Уже много старых книг для детей по теории вероятности просмотрел, но нигде не могу найти эту.
Возможно, кто-то встречался с такой книгой?

@темы: Поиск книг, Теория вероятностей

13:58 

Площадь как функция

wpoms.
Step by step ...


Дан квадрат `ABGD` с длиной стороны `\alpha`. На стороне `AD` отметили точки `E` и `Z` такие, что `DE = \dfrac{\alpha}{3}` и `AZ = \dfrac{\alpha}{4}`. Прямые `BZ` и`GE` пересекаются в точке `H`. Выразите площадь треугольника `BGH` как функцию от `\alpha`.



@темы: Планиметрия

19:00 

Дилетант
На плечах гигантов, на спинах электронов
С Днем рождения, All_ex!
:red::red::red:
От всей души желаем здоровья, счастья, творческих успехов, всего самого наилучшего!
Отличных студентов! И будьте всегда таким добрым и отзывчивым :)
изображение

@темы: Люди, Праздники

17:34 

IMO-2017

Белый и пушистый (иногда)
Завершилась 58-я Международная математическая олимпиада. Все участники российской команды получили медали.

Награду высшего достоинства завоевал Михаил Иванов из Санкт-Петербурга.
Серебряные медали получили Георгий Вепрев из Ярославской области, Кирилл Тыщук из Санкт-Петербурга и Никита Добронравов из Новосибирска.
Бронза у москвичей Тимофея Зайцева и Вадима Ретинского.

Руководители команды: Н. Х. Агаханов, М. Я. Пратусевич, Д. А. Терёшин.

Задачи можно посмотреть здесь www.imo-official.org/problems.aspx
Там же можно посмотреть индивидуальные результаты участников и разнообразную статистику.

PS Физики на IPhO-2017 выступили успешнее - 5 золотых медалей на 5 участников.

@темы: Олимпиадные задачи

22:50 

Функции

wpoms.
Step by step ...


Найдите все функции `f: \mathbb{R} \to \mathbb{R}` такие, что для всех `x,\ y \in \mathbb{R}` выполняется
`f(x+yf(x+y)) = y^2 + f(xf(y+1))`.




@темы: Функции

02:23 

Финское национальное математическое соревнование для старшеклассников

wpoms.
Step by step ...


Финское национальное математическое соревнование для старшеклассников

Финское национальное математическое соревнование для старшеклассников (Lukion matematiikka­kilpailu) проводится MAOL, финской ассоциацией учителей математики, физики, химии и информатики.

С 1997 года соревнование проводится в два раунда: В первом раунде, который проводится для трёх возрастных групп, определяются школьники, которые примут участие в финале. Квота для самых старших - 15, для следующей по возрасту категории - 4 и для самой юной - 1. В финале всем предлагаются одинаковые задания, но итоги подводятся отдельно для каждой возрастной группы.

Задачи олимпиады


@темы: Олимпиадные задачи

01:20 

Наибольшее

wpoms.
Step by step ...


Пусть $n \geq 2$ --- натуральное число. Для каждого $n$-элементного подмножества $F$ множества $\{1, \ldots, 2n\},$ определим $m(F)$ как минимум всех НОК$(x, y),$ где $x$ и $y$ --- два различных элемента $F.$ Найдите наибольшее значение, которое может принимать $m(F).$



@темы: Теория чисел

16:59 

Дунайское математическое соревнование

wpoms.
Step by step ...
Дунайское математическое соревнование

Дунайское математическое соревнование (Mathematical Danube Competition) - это тренировочное соревнование, в котором принимают участие школьники из Румынии, Болгарии, Молдовы.

Задачи олимпиады

@темы: Олимпиадные задачи

13:50 

Олимпиада Бенилюкс

wpoms.
Step by step ...
Олимпиада Бенилюкс

Математическая олимпиада Бенилюкса (The Benelux Mathematical Olympiad - BxMO) - математическое соревнование, в котором принимают участие старшеклассники из Бельгии, Люксембурга и Нидерландов. Участникам предлагаются 4 задачи, в основном соответствующие уровню простых задач ИМО или более легкие. В состав делегации от каждой страны входят 10 школьников и трое сопровождающих. Половина участников награждается бронзовыми, серебряными и золотыми медалями в отношении 3:2:1.

Задачи олимпиады

@темы: Олимпиадные задачи

02:00 

Про отроцентр

wpoms.
Step by step ...


Пусть `H` --- ортоцентр остроугольного треугольника `ABC`. `G` --- точка пересечения прямой, параллельной `AB` и проходящей через `H`, и прямой, параллельной `AH` и проходящей через `B`. Точка `I` выбрана на прямой `GH` так, что `AC` пересекает отрезок `HI` в его середине. `J` --- вторая точка пересечения `AC` с описанной около треугольника `CGI` окружностью. Покажите, что `IJ = AH`.



@темы: Планиметрия

Не решается алгебра/высшая математика?.. ПОМОЖЕМ!

главная